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Tunnelling through a dynamical barrier in dissipative
quantum systems

D Booséf, J Richert} and U Smilanskyf

t Division de Physique Théorique, Centre de Recherches Nucléaires, CNRS/Université
Louis Pasteur, BP 20, 67037 Strasbourg Cedex, France
1 Department of Nuclear Physics, Weizmann Institute of Science, 76 100 Rehovat, Israel

Abstract. Quantum tunnpelling induces transitions not only through potential bartiers, but
also through energy barriers of dynamical origin. The coupling 10 a noisy environment
introduces dissipation which affects tunnelling. This effect is studied by an analytic non-
perturbative solution of a problem involving tunnelling through a dynamical barrier in
the presence of a noisy environment. The accessibility to the classically forbidden energy
region above the dynamical barrier is reduced (enhanced) by the friction (diffusion)
effect. The occupation of each level above the dynamical barrier is characterized by the
succession in time of two different regimes. The transition between both regimes is ruled
by an energy criterion which is discussed.

1. Introduction

The behaviour of quantum systems which are coupled to a dissipative environment
is an important subject of research in several fields of physics. Indeed, various
physical realizations of such systems can be given. In solid state physics the ever
present phonon field is pictured as a dissipative background when considering the
macroscopic yet quantal sQuIDs [1]. In atomic physics, molecules and atoms passing
through microwave cavitics are subject to the superposition of both a coherent signal
and a noisy interaction due to black-body radiation |2, 3]. In nuclear physics, collective
motion in nuclei is damped by the transfer of energy and angular momentum to the
single particle degrees of frecdom which act as an effective environment [4]. A recent
paper by Hinggi et al [5] gives an updated review of the subject and a comprehensive
list of references.

The common feature of all these systems lies in the fact that the noisy interaction
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tunnelling effects. In the present work we shall be concerned with the latter
aspect, namely the influence of a dissipative environment on quantum tunnelling.
Caldeira and Leggett [6] were among the first to draw attention to the effects of
the environment on tunnelling through a potential barrier. Similar effects were also
discussed in nuclear physics in the context of fusion below the Coulomb barrier [7].
It is however possible to think of situations in which ‘tunnefling’ processes occur
without the involvement of any actual potential barrier. As a matter of fact, consider
the example of a two-level system with a parametric Hamiltonian which varies slowly
in time. Even though there is no potential barrier to tunnel through, the occurring
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Landau-Zener transition is a tunnelling phenomenon in the sense that it genuinely
depends on the wave nature of quantum mechanics. The barrier which is crossed is a
dynamical one, whose origin is due to the adiabatic variation of the parameters. The
formal analogy between the Landau-Zener effect and ordinary tunnelling is made
clear in the elegant treatment of Landau and Lifshitz [8]. It has been shown [9]
that the Landau-Zener transition probability is affected in a non-trivial way when the
two-level system is coupled to an environment.

This example suggests that one can formally generalize the usual concept of
tunnelling to situations where it is a dynamical constraint, rather than a potential
hump, which effectively acts as the barrier dividing phase space into distinct regions.
While being classically forbidden because of dynamical reasons, transitions between
these separate regions are possible because of the wave nature of quantum mechanics.
The associated quantum mechanical transition probabilities are exponentially small,
just as in the case of ordinary tunnelling [10].

Rainbow scattering is another simple example illustrating the idea. The attractive
potential which induces the scattering deflects the classical trajectories (or light
rays) in such a way that none of them are scattered into a certain zome which is
the classically forbidden region, bounded by a caustic. When one considers the
analogous wave scattering problem one finds that the intensity of scattered waves
decreases in an exponential way from the illuminated (classically allowed) to the
shaded (classically forbidden) region. This transition through the caustic is formally
equivalent to the tunnelling through a potential barrier and this analogy may even
be pushed further by remembering that both processes can be accounted for in the
semi-classical framework by allowing for complex-valued classical trajectories [10, 11].
A third illustrative example comes in the study of the excitation of rotational bands in
molecules and nuclei by an external driving torque M which is applied during a finite
time interval A¢. Classically the external torque can transfer only a finite amount of
angular momentum to the target, which is of the order of (but usually less than) the
classical threshold M At However, because of the quantum nature of the process,
one observes transitions to angular momenta higher than the classical threshold.
The intensity drops exponentially as the angular momentum increases beyond the
classical threshold [12], in much the same way as the rainbow intensity is reduced
upon entering the classically forbidden region. Here again one observes a generalized
“tunnelling” effect in which it is a dynamical barrier, the classical threshold in angular
momentum, rather than a simple potential barrier which is crossed in phase-space.

To summarize the examples just given, we can say that the well-known
phenomenon of tunnelling through a potential barrier is only one particular instance
of a large variety of situations where classical dynamics precludes certain transitions
which nevertheless do occur because of the existence of generalized ‘tunnelling’
processes on the quantum (wave) level. It is interesting to ask how a noisy
environment affects these generalized ‘tunnelling’ phenomena when they occur in
dissipative systems. The present paper intends to answer this question by studying the
effects of such an environment on the probability distribution of classically forbidden
transitions. This is done in the framework of a simple model which nevertheless can
be thought of as a paradigm for the examples cited earlier.

The modei considered here consists of a one-dimensiona] harmonic osciiiator (H0)
which is driven by an external time-dependent force f(t). If this force is acting during
a given interval of time, the HO can gain only a finite amount of energy. This leads to
the existence of two energy thresholds which can be considered as dynamical barriers
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bounding an interval of classically allowed energies. However, in agreement with what
has been pointed out above, a generalized ‘tunnelling’ process allows the quantum HO
to cross these dynamical barriers and reach the classically forbidden energy ranges
[13]. A dissipative system is created by coupling a noisy environment to the driven
HO. We present here a non-perturbative analytic expression for the energy distribution
associated with the quantum dissipative HO. This expression enables us to study the
finite-time effects of dissipation on the population of a classically forbidden energy
region, which is the purpose of the paper.

We have to stress that it is possible to obtain an analytic expression of the
quantum energy distribution only in the case where the Hamiltonian associated
with the dissipative system is quadratic, which is the case considered here. This
point raises an issue which has to be settled. Indeed, it is known that the classical
and quantum dynamics coincide in phase-space for quadratic Hamiltonians. How
can we then expect to see any generalized ‘tunnelling’ effect in a model whose
quantum and classical versions are equivalent? The answer to this apparent paradox
is the following. It is true that, in the Cartesian representation of phase-space,
the Wigner transform of the quantum evolution operator is identical to the classical
Liouville propagator when dealing with quadratic Hamiltonians. However, it must
be remembered that for experiments involving microscopic systems it is natural in
quantum (classical) mechanics to label the initial and final states of these systems
by quantum numbers (classical actions). It is the very projection onto these states
that brings in the difference between classical and quantum mechanics, because the
square of a projected wavefunction is clearly different from a projected classical phase-
space probability distribution. In other words, a Hamiltonian which i quadratic
in the Cartesian representation of phase-space is no more so in the action-angle
representation of phase-space, which is the natural representation for the present
application.

The paper is organized as follows. Section 2 summarizes the well-known results for
the case of an isolated driven classical and quantum mechanical HO. The existence of a
classically forbidden energy region which may be reached by a generalized ‘tunnelling’
process is emphasized. In section 3, the system is coupled to a noisy environment.
The analytic expression of the quantum energy distribution of the dissipative driven
HO is given (the technical details are deferred to the appendixes). In section 4, the
finite-time effects of the environment on the tunnelling tail of this distribution are
discussed. This is done by comparing the quantum versions of the model with and
without environment on the one hand, and the quantum and classical versions of
the model with environment on the other hand. A conclusion summarizes the main
results of the paper.

2. Energy distributions of the driven HO

We recall here the explicit expressions of the classical and quantum mechanical energy
distributions of an HO coupled to a time-dependent external driving force.

2.1. Classical mechanics

The equation of motion for the one-dimensional driven HO is

wig(t) + nwfaq(t) = £(1) @.1)
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where p represents the mass, w, the angular frequency and f(¢t) the external driving
force. In the following, we are interested in finite-time effects of the dissipative
environment on the driven HO. Therefore we assume that f(¢) acts only in the
interval of time between 1=0 and ¢ = At and vanishes outside it.

In order to make a consistent comparison between the classical and quantum
versions of the model, the HO is prepared at ¢=0 in the same energy state E, = fiw,/2
in both cases. Therefore, in the action-angle representation (I, ¢), the initial classical
phase-space distribution p reads

o(1,8) = 6(1 — 1) 2. 2.2)
with
Iy =Hh/2.

After the excitation of duration At, the energy distribution has broadened such that
to each initial angle ¢, there corresponds an energy

E(1y, ¢y} = woli(1y, bp)
= wylly + |[F(A1)* + 2¢/Ty(cos pyRe{ F(A1)} —sin ¢ Im{ F(A1)})]

(2.3)
where
1 At
F(At) = dt f(t)expliwyt). 2.3
(At) mfu £(2) explivy?) (2.3a)
The probability distribution in energy is given by
1 2x
PL(E At) = T Jy O (E; ~ Ei( 1y, dy))dedy
=1 ! @.4)

7 (o By F(AOF = (E; — Ey — sy FLAOP))V2

It is seen that the energies E; which may be reached by the driven HO are located
in the interval

Fnin = (\/E - \/|F(At)=2)2 <E < (Vh+ \/|F(At>|2)2 = By (25)

This is the classical accessible region which has already been alluded to in the
introduction. The two extrema of the interval are acting as dynamical barriers in
phase-space, preventing the system from reaching either lower or higher energies
and therefore bounding two classically forbidden regions. The singular behaviour of
PCL(E;, At) at these extrema (which is typical of the behaviour shown by classical
distribution functions near caustics) does not affect its normalizability. A typical
distribution { PEL( E;, At)} with its two dynamical barriers is displayed in figurel.
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Figure 1. Classical energy distributions {PCL( Ep, A1)} and {P9(E;, At)} as a
function of the action It = E¢fwy. The two vertical lines correspond lo the two
dynamical barriers of energy Fp, and Egax respectively (cf (2.5)). The distribution
'{PCL(E[,At)} is the one within the two barriers. The parameters used here are (in
appropriate units) p = 0.5, kK = 1.0, wp = L5,y = 1.1,bg = 2.2 and At = 3.0. The
external driving force is chosen to be constant with a strength fy = 1.5.

22, Quantum mechanics

Consider an HO which is initially prepared in the state m (m = 0 represents the
ground state in the following). Its probability to occupy the state n after having been
driven during a time At is

2

4o + oo
POM(AL) = f dq j dq' & (¢)G(d, Atlg.0on(9)|  (2.6)
-0 -0

where G(q', At|q,0) is the Green function which propagates the system from position
g at time O to position ¢’ at time At and ,, (y, ) iS the eigenfunction of the HO
corresponding to state m (n).

The explicit expression of the occupation probabilities P2M(A¢) we are interested
in here is [14]

1

P&M(A‘t) = —7;?

W (At)exp(— W2 AL)) 2.7
with
WAL = |F(A)|}/ A (2.7a)

Contrary to its classical counterpart (2.4), the Poissonian expression (2.7) presents
no singularities and extends over the whole range of energies from the ground state
up to infinity. This difference in behaviour is due to the fact that phase coherence
is taken into account in (2.6) but not in {2.4). Therefore, as already mentioned in
the introduction, a generalized ‘tunnelling’ process across the dynamical barrier of

energy E,,, allows the quantum driven HO to reach the classically forbidden energy
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Figure 2. Quantum energy distributions {P‘E‘M(At)} (+) and {P&M'd(At)} (x)asa
function of the HO quantum number n (the values of the occupation probabilities are
marked at n + 1/2). The two vertical lines correspond to the two dynamical barriers.
The parameters are the same as those used in figure 1.

region above E_,, [13]. So the energy distribution { P2M(A)} is characterized by a
tunnelling tail extending over the whole classically forbidden energy region. Figure 2
shows an example of such a distribution.

The difference between the classical and quantum versions of the model also
appears at the level of the moments associated with the energy distributions. While
the classical and quantum mechanical energy averages

(E(A) = E, (14 2W?(AL)) (2.8a)
and energy variances
(EX(AD)) — (E(AL)) = 4EIWI(AL) (2.80)

are the same, all higher moments are different.

3. Energy distributions of the dissipative driven HO

We consider now the case of interest in this paper, i.e. the dissipative system formed
by the driven HO coupled to a noisy environment. As in the theory of Brownian
motion this environment is characterized by a friction force and a correlation function
b(t—t") = (L(t)L(¥')}, where L(t) is a Langevin force with (L(t))=0. Although the
friction force and the correlation function are generally time-dependent we postulate
in the following that the friction force has a constant intensity - and introduce the
Markovian approximation b(t — t’) = b,6(t — ¢'). This assumption is only justified
in the limit of large temperature, ie. b,/2vy > 1. We have checked that it does not
change any physical conclusions concerning our work by implementing also finite-time
correlation functions b(¢ — t'). We shall come back to the validity of time locality
in the framework of the study presented in section 4. We also suppose that the
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coupling to the environment is switched on only over the time interval during which
the driving force is acting on the Ho. This is the case in many situations of practical
interest as, for instance, in the study of the excitation of Rydberg atoms during their
passage through microwave cavities [2, 3]. Finally we restrict our study to the case of
underdamped motion of the HO, i.e. wy > A = v /2y, which is the most interesting
one in practice.

3.1. Classical energy distribution
In the classical case the equation of motion of the driven HO is now the following
Langevin equation

pa(t) +v4a(t) + pwiay(t) = F(1) + L(2). (3.1)

The initial condition is chosen to be the same as in (2.2), and for the same reason.
Since the classical solution depends linearly on the force L(t) and since this quantity
is Gaussian distributed, the phase-space distribution p(q, p, A#; 1y, ¢,) of the HO at
time At reads [15]

o(q,p,At; Iy, ¢y)

1 4 1 1 ;o ; N .y
= _exp{—i{g—{gy(fy, ¢y, A1),
211_(”0”)1/2 P{—3(q — 2yl Ly: Py NP

Cu Cu\ ' - (e by, A
ot an (G &) (3Gt wad)} oo

with Iy, = /2 and O € ¢y < 27. Here {qu([y, ¢y, At)} is the averaged solution
of (3.1) ({pa(fy, Py, A)) = u{dq(Ly, by, At))) and || C || is the determinant of
the classical covariance matrix C' whose matrix elements are the different variances
associated with the HO, i.e.

Cy = {ghTy, By, At)) ~ (qu( 1y, g, AL))

CIZ = CZI = (qcl(Ith ¢U’ At)pd(fﬁﬁ ¢U’ At)) - (qcl(I(h ¢’01 At))(pcl(lﬂs (i’U’ At))
CZZ = {pczi([(h ¢u= At» "(pcl(lt)‘: ¢0sAt)>2- (3.261}

The final probability distribution in energy is then

1 2r +0o0 400
PCL’d(Ef) Al) = 5;;](1(% f dg dp
1} -0 -0
x 6(Eg— (p* /21 + pwld®/2)) o, p, At Iy, dy)- (3:3)
This expression is easily computed numerically by using the usual transformation
- B fandoned, me= ./ u L. gin A and renlacing tha dauble inteararinn muae
= 2E; fuwfcos ¢4, p = /21 Eysin ¢; and replacing the double integration over

g
g and p by a single one over ¢;.

Figure 1 shows also a typical energy distribution { PC-4( £, At)}. The coupling
of the driven HO to the environment induces simultancously two competing effects on
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the distribution. While friction lowers the mean energy of the Ho, diffusion broadens
its energy distribution and therefore allows the HO to reach final energies beyond
the dynamical barriers well inside the previously forbidden regions of phase space.
This behaviour is reminiscent of the phenomenon first discussed by Kramers [16] in
connection with classical transmission over a potential barrier due to the interaction
with an environment. As expected, for asymptotic times (and f(t) acting only over a
finite interval of time), (3.3) reduces to the usual Boltzmann equilibrium distribution

PELA(Ey, 00) = (2ywy/by) exp(—27 Ey/by) G4

where the ratio 2+ /b, may be interpreted as an inverse equilibrium temperature 3
(Einstein’s relation).

3.2. Quantum energy distribution

If the quantum driven HO is coupled to the dissipative environment the occupation
probability of a state » at time At, the HO being initially in the state m, is given by

+oo +o0 +o0 +
POMI(AL) = / day f dg; f dgg
-0 —00 —o -

x I{(qf’ q;’Atl‘JU» qa’o)wm(qﬂ)wm(q{)) (3'5)

[2 ]
dat o7, (gr)wn(af)

[e.0]

where the s are the eigenfunctions of the HO and K is the double propagator
which describes the evolution from some initial point gy(gj) to a final point g.(gf).
Its explicit expression is [14, 17, 18]

q 9
K (g, 4} Atlay, @), 0) = j Da(t) j Dq'(t) expli(S(q) ~ S(g))/Mola,d)  (-6)
9o 48

and involves a double integral over the paths ¢(¢) and ¢'(t) with fixed boundaries
(g0- q;) and {qf, gf) respectively. Here S(q) is the action of the HO,

At

S(q) = ] at £(q, 4) 3.7

]

with £(q,q) = p¢?/2—puwiq?®/2, and p(q,q") is the influence functional which takes
into account the coupling to the environment and to the external driving force. Its
expression reads

At
p(a,4') = exp {% [ 8 =3t = ) + F )+ () (DS )
0
At

ot
~gm [ at @) - @) [aertaeey - eace - t")} 69
0

U
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where the friction coefficient v and the correfation function 6(¢ — t') = b,6(t ~ ¢’}
are the same as in the classical case. This influence functional can be derived from
transport models [18). Here we postulate it, hence it is different from the influence
functional obtained in [19] since it has not been derived through an explicit description
of the environment. One can show that it leads to a differential equation for the
density matrix which is the same as the one derived in [20).

The double propagator K can be worked out analytically [21] as the continuum
limit of the discretized expression of (3.6). It can be written as

K = Cexp(P) (3.9

The explicit expressions for C and ¢ depend on the parameters of the model and
on specific imegrals of the driving force. The real constant C takes care of the
quantum fluctuations around the stationnary classical paths which contribute 1o the
complex phase ®. Both quantities are found in appendix A where, for the sake of
completeness, @ is given for an arbitrary correlation function b{¢ — /).

Using expression (3.9) in (3.5) it is possible to work out the non-perturbative
compact analytic expression of the occupation probabilities P24(At) we are
interested in here. Since this expression is rather cumbersome and since its behaviour
is not ﬁ.’iSy to understand by s MIIIPIC ﬁ‘:Spf‘:Ch(‘)i‘l, we present it in appendix B where we
also give the essential steps of its derivation.

The expression (B.3) of the occupation probabilities P[SLM"‘(At) that is obtained
is well suited for numerical applications. Figure 2 displays a typical probability
distribution {P2™Y(At)). One sees that the generalized ‘tunnelling effect
responsible for the tail of the quantum energy distribution is clearly affected by
the noisy environment.

As already done in figures 1 and 2, we choase the driving force to be constant

for the remainder of the paper, Le.

Fty=f, for 0 <t < At

=0 otherwise 10
which, using (2.3a) and (2.7a), gives
WAL = (W2, /2)(1 - cos(wyAt)) 3.11)
with
W2, = 25t} (.11a)

The quantity W2(At) is periodic for this choice, and therefore one can increase
the time interval in steps of 2= /w, without affectmg either PCL or POM, It j

seen that the energy E_ . of the upper barrier (cf (2 5)) reaches its maximum value

IATITT N2 at +lesnc LI,

Em = Eu(l -f- e bV gay )T Al s At = {r/w{_.)ur -f' J}{T‘ mu:gcr)

3.3. Properties of the quantum occupation probabilities

We give here some properties characterizing the occupation probabilities P2 9(A¢)
and the conclusions which may be drawn from them.
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3.3.1. Mean energy. It can be checked that the analytic expression of the mean
quantum energy

(E(AD) = (1+ 2Enpﬁ”'“(At)) (3.12a)
of the HO coincides with the corresponding mean classical energy

2
(Bt = o [ a0y (0o 0,800 + 253U b0, 000) @120

calculated from the solution of (3.1) together with the initial condition (2.2).
Introducing the useful parameter @ = (by/fuwyy) — 1, this expression may be written
as

(E(A) = E, (1 +2583At) + = [(1 — g8ty

2
—emrar (%) sin® (\/wg - A?-m) D (3.13)
-

with

SHAL) = (—‘%éi) {[1— g-2at (oos (\/wg-_—ﬁm)

() (Vs )|
N (wzw_&)\z) e-2MAL G2 (m/_“) } (3.13a)
1]

Such a result is expected [22] and supports the remark already made in the
introduction, that the differences between the classical and quantum descriptions are
manifested in the finer details of the occupation probability distribution. This check
is nevertheless of importance because it shows that (3.8) is indeed the appropriate
influence functional to describe the effects on a quantum system of a Markovian
environment acting through friction and diffusion.

332 Eguilibium. When At goes to infinity the driven HO relaxes towards
equilibrium and expression (B.3) then reads

where LY is the Laguerre polynomial of order n. If, however, the driving force acts
only over a finite time, (3.14) reduces to the usual Boltzmann occupation probability

o= () () (o)) o
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where the quantity 3 plays the role of an inverse equilibrium temperature which
fulfils the quantum version of Einstein’s relation, ie.

%'-)— = hw, coth (Bﬁiwu) . (316)

One sees that (3.15) and (3.16) are meaningful expressions only if « > 0, that
is to say by/v > fw,. For a given diffusion coeflicient by, this condition constraints
the friction coefficient « to lie in the interval [0, by/hwy) (with by /hwy < 2pw
because the motion is underdamped). (3.16) shows that the smaller - the better the
Markovian approximation (high temperature limit).

3.3.3. Short-time limit. In the limiting case v = b, = 0 the general expression (B.3)
reduces as expected to {2.7). On the other hand, if v and b, are both fixed and At
tends towards zero, one may expand (B.3) to first order in A = ~ /2u and b,. This is

.u - Lo T P . - m ewele ~OM.d -, .

the short-time limit of the occupation probabiiities P> . It reads

exp(—W?2(At))
7!

-~ WA=D(A)[n(n - Ds(AL) + n])

PMAAL) = (WZ"(At) + OAD{WZAD[1 4 ns(At)]

+ ( o ) {W2<“+‘)(At)s(m) - W (AD[1+ 2n5(A1)]

iy

+ WID(ADn(n = Ds(AD) + ]| (317)
with

s(At) =1+ %ﬂ (3.17a)

For large quantum numbers n, (3.17) approximately reads

w2

2
PIMA(AL) ~ PRM(AL) [1 +z ( - ) (AAt)] . (3.18)
max
One sees that the condition = > 0 implies the inequality P2""(At) » PRM(A1)
for n large. As seen in figure 2 this inequality is not restricted to the case considered

in (3.18) but remains valid more generally, for At finite and n not very large.

4. Study of the behaviour of the dissipative driven 10 above the dynamical barrier

With the help of some numerical examples where the parameters -y, by, and At
are varied independently, we study now the effects of the noisy environment on
the generalized ‘tunnelling’ process through the dynamical barrier of energy E, ..
We first identify the two extreme regimes which characterize the dissipative driven
HO. We then examine the behaviour of the tunneliing tail of the energy distribution
{PUQnM‘d(At)} by proceeding in two different (yet complementary) ways. On the
one hand, the comparison between the occupation probabilities Pﬁ“"'(At) and
POM(A1) ensbles us to study how the occupation of the HO levels is affected
by the environment. On the other hand, the comparison between the occupation
probabilities oM 4(A¢) and PCL-4(At) allows us to discuss the effect of dissipation
on quantum phase coherence.
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4.1. Extreme regimes of the dissipative HO

According to (3.16), for a given value of the diffusion coefficient b, the friction
coefficient + has to take values within the interval [0, b, /hw,]. As shown in figure 3,
the tunnelling tail of the distribution { PIM(At)} lies between the two extreme
distributions corresponding to the boundaries of the interval. Although rather
unphysical, these two extreme regimes deserve to be mentioned because they set
the bounds of the effect of the dissipative environment on the driven Ho.

In the so-called diffusive regime, which corresponds to + = 0, the diffusion effect is
the strongest. This is also the regime where the Markovian approximation is working
(see discussion at the beginning of section 3). The expression of the occupation
probabilities PlﬁM"'(at) is given by the leading order of the expansion of (B.3) as a
function of . In this limit, the mean energy (3.13) reads

(E(At)) = E, (14 2W?*(At)) + DAt @.1)

where [} = b;/2u is the momentum diffusion constant associated with the classical
variance C,. As expected, the mean energy is always larger than the one
corresponding to the absence of coupling (cf (2.8a)), and a similar conclusion hoids
for the energy variance. Therefore, in the diffusive limit, the probabilities P2M¢ are
larger than the probabilities P2M above the barrier.

The other extreme regime, which is called dissipative in the sequel, corresponds
to the case for which the friction coefficient takes its maximally allowed value
v = by/hw,. If in this case ¥ becomes large (w, small compared to by) the Markovian
approximation may break down; since, however, we checked that this approximation
does not invalidate the conclusions (see discussion at the beginning of section 3), we
discuss this regime here for the sake of completeness. The occupation probabilities
reduce to the remarkably simple Poissonian expression

PMY(AL) = — 5™ (A1) exp(~S(AD)) “2

where SZ(At) has been defined in (3.132). The comparison between W2(At) (cf
3.11) and S?(A¢) shows that the condition W2(A¢) > S2(At) is usually satisfied
by choosing the time At adequately. This means that both the mean energy and the
energy variance are usually smaller in the dissipative case than in the case without
coupling. Hence, for v = by/fw,, the probabilities P2 are usually smaller than
the probabilities PI™ above the barrier. In the case where the friction coefficient
is not equal to the limiting value b,/hw, but close to it, the tail of the associated
distribution does not completely fall under the tail of the distribution { P2M(At)}.
The two tails cross near a critical quantum number n* (for instance n* = 9 in
figure 2). Numerical examples show that n* increases with W2, but decreases as
z increases. An analytic expression of n*(At) may be given in the case of the
short-time limit. Equating expressions (2.7) and (3.17), one gets

n*(At) = Im{ (sz(f” ((ZA&;)‘)) + WAt

* \/(W;(ft) + (S(zg(gt_)l))z + Wz(m)} @.3)
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where Int{y} is the integer part of y and where s(A1) has been defined in (3.17a).

The considerations of this section allow us to conclude that, as the ordinary
tunnelling phenomenon, the generalized “tunnelling’ process is reduced (enhanced)
by the effect due to friction (diffusion). This rough picture will be improved in the
next section.

Probability

o

T ER R ,
0 2 4 6 ] 10 12 1

Figure 3. Quantum energy distributions corresponding to the two extreme regimes
introduced by the consistency condition (see text), as a function of the HO quantum
number n. The upper curve {V) corresponds to the diffusive regime - = G and the
lower curve (A) to the dissipative regime ~ = by/hwp. The distribution {PQM(At)}
(x) is shown for comparison. The two vertical lines correspond to the two dynamical

barriers. The parameters used here are u = 0.5, A=1.0,wp= 15,0y =2.2, o =15
and At =3.0.

4.2.  Comparison between the quantum occupation probabilities with and without
environment

The competing effects of friction and diffusion, on the one hand, and the conservation
of total probability, on the other hand, give rise to opposite trends of the tunnelling
tail of the distribution {Pﬁ“‘d(.ﬁt)} in the vicinity of the barrier, depending whether
the system is near the dissipative limit or near the diffusive limit. This may be seen
by studying, for a given diffusion coeflicicnt b; and for a given time At, how the first
normalized ratios PoM¢/F3M above the energy barrier are behaving as the friction
coefficient v decreases within the allowed interval [0, b, /hw,]. Figures 4 and 5 show
that, in the neighbourhood of the dissipative limit + ~ b,/#w, (here on the right of
the graphs), a decrease of the cocflicient ~ produces a continuous increasc of these
ratios. Such a population behaviour is ¢xpected and easy to explain. As the value

of the coefficient v diminishes, the effect due to friction decreases in importance
if comnared with the effect due to diffusion and the abilitv of the system to reach

AN PRIV Wil v Wit Bl U saas2arll sl QUL UL WA 9ol 0 LGN

energies above the barrier is increasing in consequence. Quite on the contrary, the
same graphs show that in the neighbourhood of the diffusive limit y >~ 0 a decrease
of the coefficient ~ leads to a continuous decrease of the ratios F QM d / PQM

depopulation behaviour originates from the conservation of the total probablhty The
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effect due to diffusion prevails now completely over the effect due to friction and
the tail of the distribution flattens out more and more as one goes along towards
the diffusive limit. But this possibility to reach higher and higher energies above
the barrier occurs of course at the expense of the individual occupation probabilities
PL?M"’ in the energy region around the barrier, whose values have to diminish in

1t
order for the total occupation probability to remain constant.
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Figore 4. Logarithm of the ratio P&M’d /P&M for n = 3 {(corresponding to the first HO
state above the dynamical barrier), as a function of the friction coefficient . The inset
shows the variation of the ratic {E}/kwo with the coefficient . The parameters used
here are ¢ = 0.5,k =1.0,wo = m/2,5=5.0, fy = 1.0 and &1 = 6.0.
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Figure 5. Logarithm of the ratios PD?‘M"/P&M for n = 4 (lower curve), n = 5
(middle curve) and n = 6 (upper curve), as a function of the friction coefficient +. The
parameters are the same as those used in figure 4.
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The diffusion coefficient and the time At being fixed, it is natural to ask for the
value v" of the friction coefficient + for which the transition from the population to
the depopulation behaviour occurs above the barrier. In fact, a different value +*
has to be associated with each individual HO state which is considered. The inset
in figure 4 displays the variation of the mean energy (E) of the Ho (cf (3.13)) as
the value of the coefficient + is modified. It shows that, starting near the dissipative
regime, a progressive decrease of the coefficient - produces as expected an increase
of (E). From the study of many numerical examples, one finds that once (E) has
increased enough as to be equal to the energy of a given state n, ie. when

(B _ 1
o =nts @4

the transition between the two behaviours occurs for this particular state. Indeed, it
can be checked on the examples of figures 4 and 5 that the value +* of the coefficient
«y for which the condition (4.4) is satisfied (sce inset in figure 4) is exactly the same as
the one for which the level n starts to be depopulated after having been continuously
populated. The value of +* decreases with increasing n. In appropriate units, this
valve is v* = 0.50 for n = 3 (figure 4) and ~* = 0.38,0.30,0.25 for n = 4,5,6
{(figure 3).

There exists another way to observe, level by level, this transition from the
population to the depopulation regime, which is much more suited for actual
experiments. It consists in studying, for a given friction coefficient and a given
diffusion coefficient (i.e. for a given temperature of the system), the variation with
time At of the first normalized ratios P2™ ¢/ P3M above the barrier. In order to
do such a study in a transparent way one chooses the values of the successive times
for which these ratios are computed as At = (27 /w;) (k + €), where k stands for
an increasing integer while 0 < £ < 1. For this particular choice of the times At
the probabilities P2 do not depend on k (because of the property of periodicity of
the quantity W2(At), cf (3.11)), in contradistinction with the probabilities P4,
One is therefore able, for a given Ho state, to determine in an unambiguous manner
the time At* for which the expected transition happens. In practice, interpreting the
relation (4.4) in a time-dependent picture, this time At" has to correspond exactly
to the time for which the value of the mean energy (E(At)) of the HO becomes
equal to the value of the energy associated with the considered state. This is well
confirmed by many numerical examples, among which the ones of figures 6 and 7.
Indeed, reading on the graph {(E(At)} in the inset of figure 6 the time value for
which the mean energy reaches a given HO energy, one finds (in appropriate units)
that At* = 4.1,7.1,10.6 for n = 2,3,4, which is precisely the value for which the
associated state (n = 2 in figure 6, n = 3,4 in figure 7) starts to be depopulated. It
takes obviously longer for (E(At)) to reach larger values and therefore the higher
the state, the later the change from population to depopulation behaviour.

The succession in time of these two regimes may be interpreted as the succession
in time of two different processes. As long as At < At there is an effective
competition between the effects due to friction and diffusion, and the level is
populated through the generalized ‘tunnelling’ process. When At > At* the effect
due to diffusion is completely prevailing over the effect due to friction. Therefore the
process which depopulates the level has rather to be viewed as a diffusion-induced
transmission through the barrier which can be considered as the quantum counterpart
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Figure 6. Logarithm of the ratio Po?lM'd(At)/Po?lM(At) for n = 2 (corresponding
to the first HO state above the dynamical barrier), for the successive times At =
(2mfwo)(k 4+ &) with & = 0,1,2 etc. The inset shows the variation of the ratio
(E(At))/hwy with these times Atf. The parameters used here are ¢ = 2.0,f =
0.25, we = 27, v = 0.1, by = 3.0, fo = 13.5 and € = 0.1.
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Figure 7. Logarithm of the ratios POM9(A1) /PM(At) for n =3 (lower curve) and
n = 4 (upper curve), for the successive times At = (2w/wo)(k +£) with k=10,1,2
ete. The parameters are the same as those used in figure 6.

of the classical Kramers diffusion. This picture will be corroborated by the results of
the next section.

The population—depopulation transitions are observed above the barrier only when
the mean energy has time enough to reach E,, before it relaxes to equilibrium.
Of course, as shown by (3.13), the larger the friction coefficient v the longer the
time needed by (E(At)) to cross the dynamical barrier. Therefore the smaller this
coefficient the more pronounced the effect, ie. the larger the number of levels for
which the transition takes place. Hence it is in the vicinity of the diffusive regime,
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when the Markovian assumption is best justified, that the effect is most favourably
seen.

Several analytic results, which are relevant to the population-depopulation
transition, may be derived close to the diffusive limit. For simplicity, they are given
in the case for which the value of F_,, is the largest. The minimal time (A{f)g;,
which is needed for the mean energy to reach the barrier is obtained by equating the
expression (4.1) to the expression of E,,. (cf (2.5)). One gets

(80 = (222) 2 Wi @5)

This time sets the lower bound of the transition times Ai*. The expression of the
mean cnergy which is valid close to the diffusive limit is obtained by taking the two
lowest orders in the expansion of (3.13) in powers of A. It reads

(B(A)) = Ey (14 2W2 4 2(x — W2, )AAL). (4.6)

Equating this last expression to the expression of F,,, one obtains the minimal time
At needed by the mean energy (4.6) to reach the barrier, which (for = > WZ2,) is
given by
2W,
At = o 4.7
A(:": - W%ax) ( )
On the other hand, the time At* at which a state of given quantum number n above
the barrier undergoes the transition from the population to the depopulation regime
is obtained by equating the expression (4.6) to the expression £, = Fy(1+2n) of
the energy of the state. It reads

— W2
At = T Wmax . 4.3
/\(-‘L‘ - wnz:ax) ( )

For n, = » W2, , the time At* is approximately given by

v En
At® o~ D-20E, (4.8a)
Finally, it is interesting to get an idea of the number of levels which are undergoing
the transition before relaxation of the mean energy occurs. The expression (3.13)
shows that (At), = 1/2X is a typical relaxation time of (E(At)). Equating (At),
to the expression (4.8) of At*, one gets approximately the quantum number N of
the highest state for which the transition is still clearly seen

2
N:Int{§+%} 4.9)

which, for =z 3> W2

2% May be written as

N ~Int {E-%(At),} . (4.9a)

In numerical studies the minimal size of the density matrix describing the time
evolution of a dissipative quantum system has clearly to be chosen of the order
of N.
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4.3. Comparison between the classical and quantum occupation probabilities

In order to complement the previous discussion, it is interesting to compare the
tails of the distributions {4 (E;, At)} and {P‘ﬁM'd(At)} for various values of
the parameters -y, b, and At. Indeed, such comparisons allow us to study the
importance of the generalized ‘tunnelling” process compared with the classical diffusive
transmission through the dynamical barrier. They provide us therefore with a clear
picture about how the noisy environment affects quantum phase coherence.

Figure 8 shows that, if compared to the classical diffusive transmission through
the dynamical barrier, the generalized ‘tunnelling’ process decreases the ability of
the system to reach energy values above E,_,,. This is the very fingerprint of
phase coherence, whose effect is to reduce the values of the quantum occupation
probabilities in comparison with the values of the classical occupation probabilities,
This reduction becomes more important in proportion as energy increases. For the
example of figure 8, the ratio POM«d/PCld 5 of the order of 0.8 for n = 4 and
0.7 for n = 5 whereas it is of the order of 0.04 for n = 16 and 0.03 for n = 17.
Hence phase coherence is responsible for the localization in energy of the tail of the
quantum distribution.

i *
1073
107
1073
16

-1
" +—rT1v— ——
4 6 ? 10 12 T it
fenn

Probability

Figure 8, Comparison between the energy distributions { PCM4( Er, At)} (full line) and
{P&M’d(At)} {x) above the dynamical barrier. The classical {quantum) distribution is
the same as in figure 1 (2) respectively.

The differences A(n) = PLY(E, = E,,At) - P2%!(at) provide a
quantitative measure of the importance of the generalized ‘tunnelling’ process
compared with the classical diffusive transmission. These quantities enable us to
study in which manner quantum phase coherence is affected by variations of the
friction and diffusion coefficients and of the time At. Figure 9 shows that, for a
given diffusion coefficient and a given time At, the differences A(n) are decreasing
as the friction coefficient v increases, the decrease becoming more significant as the
state n lies higher in energy. For the example of figure 9, this decrease between
the cases v = 0.4 and v = 1.0 (in appropriate units) is of one order of magnitude
for n = 10 whereas it is of three orders of magnitude for n = 20. This means
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Figure 9. Differences A(n) = PLA(E; = (n+ 1/2)kwy) — Po? for Ho states n
above the dynamical barrier (the values of the differences are marked at n + 1/2), as
a function of the friction coefficient <. The lower curve corresponds to v = 1.0, the
middle one 1o -y = 0.7 and the upper one to -y = 0.4. The parameters used here are
p=05xr= 10wy =150b0=35, fo=0.1 and At =3.0.

that the effect of quantum phase coherence is progressively weakened as the friction
coefficient grows, and the more 5o the higher one goes in energy. In other words,
the phenomenon of localization in energy of the quantum distribution becomes less
apparent in proportion as the effect due to friction increases. So it is for y ~ 0,
ie. close to the diffusive limit, that this phenomenon is most clearly seen. In a
complementaty manner one can also examine the behaviour of the differences A(n)
with respect to variations of the diffusion coefficient b, for a given friction coefficient
and a given time At This is done in figure 10 which shows that the quantities A(n)
are increasing with the coefficient b, This increase becomes more pronounced if the
considered energy is larger. Hence the phenomenon of localization in energy of the
quantum distribution becomes more conspicuous as the effect due to diffusion gets
more important.

The effect of quantum phase coherence on the occupation probabilities is changing
with time. This is clearly seen in figure 11 which displays, for three different HO
states n beyond the barrier, the variation of the difference A(n, At) as the time At
increases in steps of 27 /w, (the values of the different parameters are the same as
in figures 6 and 7). As it was the case for the ratios POM4(At)/PSM(At) (and for
the same reasons, as secn below) the behaviour in time of the difterence A{n,At) is
characterized by two successive stages. In the first stage the effect of guantum phase
coherence on the occupation probability of a given state is increasing in proportion as
time grows. Indeed, the effect due to diffusion is gaining progressively in importance
over the effect due to friction as time goes and so, according to what has been said
above, the difference A(n,At) has to increase in consequence. On the contrary
one sees that the effect of quantum phase coherence is decreasing with increasing
time in the second stage. Tb find the origin of this behaviour it is crucial to observe
in figure 11 the time at which the effect of phase coherence on the occupation
probability of a state n starts to decrease after having increased. Looking at the
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Figure 11. Differences A(n, At) = PCLO(Ep = (n+1/2)hwo, Af) — PEMI(AL) for
HO stales n beyond the dynamical barrier, for successive times At = (2w /wo}(k + £)
with k =0, 1,2 etc. The upper curve is for n = 2, the middle one for n = 3 and the
lower one for n = 4. The parameters are the same as those used in figures 6, 7.

inset of figure 6, one sees that this time corresponds once again precisely to the
time for which the condition {E{At)}/hw, = n + 1/2 is satisfied, ie. the time
At* at which the population—depopulation transition occurs for the state n. As
a matter of fact one can check that, for the considered state, the time associated
with the maximum of the curve is the same in figure 11 as in figures 6 and 7, ie.
At* =4.1,7.1,10.6 for n = 2,3,4. This coincidence allows us to conclude that the
decrease of quantum phase coherence in the second stage has the same origin as the
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depopulation behaviour, which is the conservation of the total occupation probability.

All these facts lead us to the conclusion that, for a given state, the population stage
is also the stage for which the effect of quantum phase coherence on the occupation
probability increases whereas the depopulation stage is, on the contrary, the stage
for which the effect of quantum phase coherence is weakened. Hence the transition
from a population to a depopulation behaviour also corresponds to a transition from
an increase to a decrease of the effect of quantum phase coherence, occurring at the
same time A

This conclusion supports what has already been said in the previous section, that
the existence of two stages in the occupation of a given energy level is the fingerprint
of the succession in time of two different processes. Indeed, when At < At~ the
vajues of the classical and quantum occupation probabilities are moving away from
each other as time increases. This is a clear indication that the level is populated
by a different process in each case. It is the diffusive transmission in the classical
case and, because the effect of phase coherence is enhanced in this stage, a genuine
generalized ‘tunnelling’ process in the quantum case. In contrast the values of the
classical and quantum occupation probabilitics are moving closer to each other as
time grows when At > At*. This means that the level is depopulated by a process
which, from a generalized ‘tunnelling’ phenomenon, tends progressively to become
a quantum diffusion induced transmission through the barrier as the effect of phase
ccherence is weakened.

5. Conclusion

The purpose of this paper has been to study how the process of ‘tunnelling’ through
an energy barrier of dynamical origin, which generalizes ordinary tunnelling through
a potential barrier, is affected by the presence of a noisy environment. This has been
done in the framework of a soluble model which consists of a driven HO (angular
frequency w,} coupled to a Markovian environment (friction coefficient -y, diffusion
coefficient b,). The finite-time energy distribution of the quantum dissipative driven
HO, which is the central quantity of interest in the study, has been expressed in closed
analytic form without resorting to any approximation,

The comparison of the tail of the quantum energy distribution in the diffusive
regime (v ~ 0) with the one in the dissipative regime (v = b,/hw,) shows that the
generalized ‘tunnelling’ process through the dynamical barrier is enhanced (reduced)
by the diffusion (friction) effect. This rough picture has been refined by studying how
the individual HO levels above the dynamical barrier are occupied. The conservation
of the total occupation probability implies that the occupation of a given level is
characterized by two different stages occurring successively in time. The level is
continuously populated (depopulated) in the first (second) stage. Going further, it
has been shown that the transition from the population to the depopulation stage
happens precisely at the time At* at which the mean energy of the dissipative driven
HO becomes equal to the energy of the considered level. An analytic expression
of At*, valid close to the diffusive limit where the Markovian description of the

P T hant fnatifiad hoo hosn mauan
envircnment J.D ULoL Junuuou, nas oeen Bivell.

These results have been complemented by a quantitative comparison between
the generalized ‘tunnelling’ process and the classical diffusive transmission through
the barrier. Phase coherence localizes the tail of the quantum energy distribution
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compared with the tail of the classical energy distribution. This localization effect
becomes more (less) conspicuous as the diffusion (friction) coefficient is increased.
The study of the effect of phase coherence on the occupation of a given HO level
shows that the population (depopulation) stage is also the stage in which phase
coherence is enhanced (weakened). As a consequence, a given level is populated
by a genuine generalized ‘tunnelling’ process whereas it is depopulated by a process
which can be considered as a quantum diffusion induced transmission through the
barrier.
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Appendix A

In the case of underdamped motion of the HO {(wy > A = +/2u), which is the one
considered here, the pre-exponential factor € and the phase ¢ introduced in (3.9)

read [21]
o iy wt — A2exp(AA1) a1
2rhsin(y/wi — AZAL)
and
. . 1 At At
® = inln(ADQAD — nOQO/h+ 75z [ arn(e) [ arrmerype - 1)
(A.2)

with n(1} = q(t) - ¢'(t) and Q(2) = (q(2) + ¢'(1}) /2.
Here q(t) and ¢'(t) are the solutions of the coupled saddle-point equations
obtained from (3.6):

. At
5 (3055) ~ mas + 20O = 10§ [ 8 @) (N1 1) =0

8q(t)) ~ dq(t)
d oL oL 7 i o ‘ ’ re gt Ny —
di (&j’(t)) - 37 (D) +v4(t) — f(t) - E]u at' (gt — (' Nh(t =ty =0
(A3)

where £ is the Lagrangian of the HO and the boundary conditions are fixed such that

q(0) = gy, ¢'(0) = qp, q(At) = gq and ¢'(At) = ¢y _
Solving these equations explicitly, it is possible to put the phase @ into the

following form

$ = Anf +14;mQp + iAzn + Agngny + 1450,Qg

+iA4,Qmy +1A4;my + iAgny Qy + Agnf (A.4)
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where my = ¢y — gt T = ¢ — af, Qo = (go+ ¢))/2 and Q; = (g + gf)/2. The real
time-varying coefficients A,({ = 1,9) depend either on ~ alone (A,, A, A, Ag)
or on both «y and by(A;, A4, Ag) or on both v and f(£)( A;, A;). Introducing the
quantities

a(t) = (exp(Ayt + A At) —exp( Xt + A AL))/(exp( M AL) —exp(X,AL))  (AS)
and
B(t) = (exp(A;t) — exp(A;t))/(exp( A At) — exp( A, A1)) (A.6)

with Ay = A+(=)i(w§—A?)V/2, these coeflicients are given by the following general
expressions

1 at At
A, =~qu dt,@(t)fo dt' B(1)b(1 — 1)

Az = SOnexp(XA1) - Xy exp(3, A1) /(exp(X, A1) — exp(X, A1)

At
ay=1 [ s

1 At At
A, = _h_z_/; dtﬁ(t)/0 dt’ a(t")b(t - t')

As = £ (A = M) /(exp(M A1) — exp(A,A1))

Ag = Asexp(2AAt)

(A7)

At
=1 [ atsyac)

Ag= A+ v/h

1

At At
_— f 1} - !
A, = 252/; dta(t)/u At ()b ~ ).

For the case of interest here, ie. b(t — t') = b;6(¢ — t’), all these expressions can
easily be worked out analytically,

Appendix B
We give here the general analytic expression of the quantum occupation probabilities

PU?IM"’(At). To obtain it one starts with (3.5) and (3.9) (where C and ¢ are defined
by (A.1) and (A.4) in appendix A) and with the HO wavefunctions

eala) = (2v/m)V4 2" nt)"V2H,, ((20)' 2 q) exp(-vq’)

where H_ is the Hermite polynomial of order » and v = uw;/2h.
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Changing variables to
zy = (20)*(go + gf}/2
v = (20)*(qy - q4)/2
ze = ()2 (g + qi) /2
e = ()2 (g - g} /2

it is possible to integrate over x, and x, by using the identity [23]

+o0
/ dz exp(—zz+ixﬁ)Hn(m+y)Hn(:c—y)

=2"n'nlexp(—57/4) L}, (24" + §7/2)

where LY is the Laguerre polynomial of order n.
One is therefore led to the intermediate expression

Pean = @e/Re] [ ™ ay, [ i

x exp(—ayy — byf + cyuyf + idy, + iey;)
x Lu ((2 + A2/2V2) vo + As'y; /2V + AsAxyuyf/V )

x LY ((2+ AZ/20?) y? + ALy /20° + Ay Aguyue/VY) } (B.1)
where the quantities A; are defined in appendix A and

a = (1= by/huwyy)(1+ AZ/4?) + (1 + by /Ry ) (AL f40?)

b= (14 by/huwyy)(1+ AL/42) + (1= by/huwyv)(A}/42)

e = =(1 = by/hwyy)(AsAg /20%) — (1 + by/hiwy) (A, A¢/207) (B.2)

d = 2A,/(20)/?

e =2A4,/(2v)"/?

(it may be shown that the quantities « and b are always positive as expected).

Considering the special case m = 0 we are interested in here (the general case can
also be worked out directly), the previous expression is integrated in a straightforward
way by using the polynomial expansion of LY together with an appropriate change
of variables. The final result reads

n
pQMd, Ay 1 2l N
' S = jLJ

xz@(z)“zcs; e )'icw( o

S g DL (G (G (G
(k+p/2)\ G, Gy G,

p=U
(B.3)
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where C7? = n!/i!(n — i)! etc. and where the indices k and p have always to be of
the same parity.

The time-varying quantities G;(¢ = 1,6) are most conveniently expressed in terms
of the parameter « = (b;/fwwyy) — 1. They are given by the following expressions
(A= v/2u)

Gy =1+ z{l - (1/2A) (8% + A2 + A))
+ 2 {{ A + Al - (87 + Af + A]))/4AY}
Gy = —v[L + 2{( A} — 4 — A})/2A4%}]
Gy = —e{(v/AD)(As ~ A)}
Gy = (1/2A47)[-24, A Fy — 8P AGF, + o{(AsAg ~ Ay Ag) Fy
+ 4 As — A )]
GS = (I/Ag)[ZAéFl - 2A6A8F2 + “"{(Aﬁ - AS)FI - (AﬁAS - AzAs)Fz}]
Gg = (v/2AD)[2((4% + A FY [4%) + 4% + A F} — (8\uFy Fy /1)
+ 2{((42+ AL - ADF{ /4% + (42 + Af - ADF

(B.4)

~ (pF Fy/h))

with

fim (3) £ oo (s (VoT0) s o (V)
and

1 At o
= (ﬁ—m) /; dt f(t)e* sin (\/wg - ,\zt) .

One can check that ° P2M9(A¢) = 1, as it must be.

n=0
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