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Abstract. Quantum tunnelling induces vansitions not only through potential barriers, but 
also through energy barriers of dynamical origin. The coupling to a noisy mvironment 
introduces dissipation which affecrs tunnelling. This effect is studied by an analytic non- 
penurbative solution of a problem involving tunnelling through a dynamical barrier in 
the presence of a noisy envimnment. The accessibility to the dassically forbidden energy 
reeion above Ihe dynamical banier is reduced (enhanced) h/ the fiction (diffusion) 
effect. The mupation of each level above the dynamical barrier is characterized by the 
succession in time of two different regimes. ?he transition between both regimes is ruled 
by an energy criterion which is discussed. 

1. Introduction 

The behaviour of quantum systems which are coupled to a dissipative environment 
is an important subject of research in several fields of physics. Indeed, various 
physical realizations of such systems can be given. In solid state physics the ever 
present phonon field is pictured as a dissipative background when considering the 
macroscopic yet quantal SQUIDS 111. In atomic physics, molecules and atoms passing 
through microwave cavities are subject to the superposition of both a coherent signal 
and a noisy interaction due to biack-body radiation (2, 33. in nuciear physics, coiiective 
motion in nuclei is damped by the transfer of energy and angular momentum to the 
single particle degrees of freedom which act as an effective environment [4]. A recent 
paper by H2nggi et al [5] gives an updated review of the subject and a comprehensive 
list of references. 

The common feature of all these systems lies in the fact that the noisy interaction 

tunnelling effects. In the present work we shall be concerned with the latter 
aspect, namely the influence of a dissipative environment on quantum tunnelling. 
Caldeira and Leggett [6] were among the first to draw attention to the effects of 
the environment on tunnelling through a potential barrier. Similar effects were also 
discussed in nuclear physics in the context of fusion below the Coulomb barrier [7l. 

It is however possible to think of situations in which 'tunnelling' processes occur 
without the involvement of any actual potential barrier. As a matter of fact, consider 
the example of a two-level system with a parametric Hamiltonian which varies slowly 
in time. Even though there is no potential barrier to tunnel through, the occurring 
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Landau-Zener transition is a tunnelling phenomenon in the sense that it genuinely 
depends on the wave nature of quantum mechanics. The barrier which is crossed is a 
dynamical one, whose origin is due to the adiabatic variation of the parameters. The 
formal analogy between the Landau-Zener effect and ordinary tunnelling is made 
clear in the elegant treatment of Landau and Lifshitz [SI. It has been shown [9] 
that the Landau-Zener transition probability is affected in a non-trivial way when the 
two-level system is coupled to an environment. 

This example suggests that one can formally generalize the usual concept of 
tunnelling to situations where it is a dynamical constraint, rather than a potential 
hump, which effectively acts as the barrier dividing phase space into distinct regions. 
While being classically forhidden because of dynamical reasons, transitions between 
these separate regions are possible because of the wave nature of quantum mechanics. 
The associated quantum mechanical transition probabilities are exponentially small, 
just as in the case of ordinary tunnelling [lo]. 

Rainbow scattering is another simple example illustrating the idea. The attractive 
potential which induces the scattering deflects the classical trajectories (or light 
rays) in such a way that none of them are scattered into a certain zone which is 
the classically forbidden region, bounded by a caustic. When one considers the 
analogous wave scattering problem one finds that the intensity of scattered waves 
decreases in an exponential way from the illuminated (classically allowed) to the 
shaded (classically forbidden) region. This transition through the caustic is formally 
equivalent to the tunnelling through a potential barrier and this analogy may even 
be pushed further by remembering that both processes can be accounted for in the 
semi-classical framework by allowing for complex-valued classical trajectories [lo, 111. 
A third illustrative example comes in the study of the excitation of rotational bands in 
molecules and nuclei by an external driving torque A4 which is applied during a finite 
time interval A t .  Classically the external torque can transfer only a bi te  amount of 
angular momentum to the target, which is of the order of @ut usually less than) the 
classical threshold M A t .  However, because of the quantum nature of the process, 
one observes transitions to angular momenta higher than the classical threshold. 
The intensity drops exponentially as the angular momentum increases beyond the 
classical threshold [12], in much the same way as the rainbow intensity is reduced 
upon entering the classically forbidden region. Here again one observes a generalized 
“tunnelling” effect in which it is a dynamical barrier, the classical threshold in angular 
momentum, rather than a simple potential barrier which is crossed in phase-space. 

lb summarize the examples just given, we can say that the well-known 
phenomenon of tunnelling through a potential barrier is only one particular instance 
of a large variety of situations where classical dynamics precludes certain transitions 
which nevertheless do m u r  because of the existence of generalized ‘tunnelling’ 
processes on the quantum (wave) level. It is interesting to ask how a noisy 
environment affects these generalized ‘tunnelling’ phenomena when they occur in 
dissipative systems. The present paper intends to answer this question by studying the 
effects of such an environment on the probability distribution of classically forbidden 
transitions. This is done in the framework of a simple model which nevertheless can 
be thought of as a paradigm for the examples cited earlier. 

I ne modei considered here consists of a one-dimensionai haittronic osciiiaioi @iOj 
which is driven by an external time-dependent force f ( t ) .  If this force is acting during 
a given interval of time, the HO can gain only a finite amount of energy. This leads to 
the existence of two energy thresholds which can be considered as dynamical barriers 
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bounding an interval of classically allowed energies. However, in agreement with what 
has been pointed out above, a generalized ‘tunnelling’ process allows the quantum HO 
to cross these dynamical barriers and reach the classically forbidden energy ranges 
[13]. A dissipative system is created by coupling a noisy environment to the driven 
HO. We present here a non-perturbative analytic expression for the energy distribution 
associated with the quantum dissipative HO. This expression enables us to study the 
finite-time effects of dissipation on the population of a classically forbidden energy 
region, which is the purpose of the paper. 

We have to stress that it is possible to obtain an analytic expression of the 
quantum energy distribution only in the case where the Hamiltonian associated 
with the dissipative system is quadratic, which is the case considered here. This 
point raises an issue which has to be settled. Indeed, it is known that the classical 
and quantum dynamics coincide in phase-space for quadratic Hamiltonians. How 
can we then expect to see any generalized ‘tunnelling’ effect in a model whose 
quantum and classical versions are equivalent? The answer to this apparent paradox 
is the following. It is true that, in the Cartesian representation of phase-space, 
the Wigner transform of the quantum evolution operator is identical to the classical 
Liouville propagator when dealing with quadratic Hamiltonians. However, it must 
be remembered that for experiments involving microscopic systems it is natural in 
quantum (classical) mechanics to label the initial and final states of these systems 
by quantum numbers (classical actions). It is the very projection onto these states 
that brings in the difference between classical and quantum mechanics, because the 
square of a projected wavefunction is clearly different from a projected classical phase- 
space probability distribution. In other words, a Hamiltonian which is quadratic 
in the Cartesian representation of phase-space is no more so in the action-angle 
representation of phase-space, which is the natural representation for the present 
application. 

The paper is organized as follows. Section 2 summarizes the well-known results for 
the case of an isolated driven classical and quantum mechanical HO. The existence of a 
classically forbidden energy region which may be reached by a generalized ‘tunnelling’ 
process is emphasized. In section 3, the system is coupled to a noisy environment. 
The analytic expression of the quantum energy distribution of the dissipative driven 
HO is given (the technical details are deferred to the appendixes). In section 4, the 
finite-time effects of the environment on the tunnelling tail of this distribution are 
discussed. This is done by comparing the quantum versions of the model with and 
without environment on the one hand, and the quantum and classical versions of 
the model with environment on the other hand. A conclusion summarizes the main 
results of the paper. 

2. Energy distributions of the driven HO 

We recall here the explicit expressions of the classical and quantum mechanical energy 
distributions of an HO coupled to a time-dependent external driving force. 

21. Classical mechanics 

The equation of motion for the one-dimensional driven HO is 
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where p represents the mass, wu the angular frequency and f ( t )  the external driving 
force. In the following, we are interested in finite-time effects of the dissipative 
environment on the driven HO. Therefore we assume that f ( t )  acts only in the 
interval of time between t=O and 1 = A t  and vanishes outside it. 

In order to make a consistent comparison between the classical and quantum 
versions of the model, the HO is prepared at t=O in the same energy state E,, = b U / 2  
in both cases. Therefore, in the action-angle representation (I, +), the initial classical 
phase-space distribution p reads 

~ ( 1 , 4 )  = 6 ( 1  - Z O ) / ~ T .  (2.2) 

with 

IO = h/2 .  

After the excitation of duration At ,  the energy distribution has broadened such that 
to each initial angle 4, there corresponds an energy 

Ef(~W4U) = W"If(f"34") 

= w,[& + IF( At)['  + 2&(cos 4,, Re{F(At) )  - sin 4,, Im{F( At)})] 

(2.3) 

where 

SA' dt f(t)exp(iw,t). F ( A t )  = - 1 

- U  

The probability distribution in energy is given by 

1 1 
T ( LO E0l F( A t )  I* - ( E, - EO - WO[ F( At) 1 2 ) 2 ) 1 / 2  

- _ -  

( 2 . 3 ~ )  

It is seen that the energies E, which may be reached by the driven HO are located 
in the interval 

This is the classical accessible region which has already been alluded to in the 
introduction. The two extrema of the interval are acting as dynamical harriers in 
phase-space, preventing the system from reaching either lower or higher energies 
and therefore bounding two classically forbidden regions. The singular behaviour of 
F L ( E f , A t )  at these extrema (which is typical of the behaviour shown hy classical 
distribution functions near caustics) does not affect its normalizahility. A typical 
distribution { PcL( E,, At)} with its two dynamical barriers is displayed in figurel. 
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1' 

Flgum 1. Classical energy dislribulions {P"(Er,At)) and {P"md(Er,At)} as a 
function of lhe action I r  = Er/wo. The WO vettical lines carrespond to the WO 
dynamical barrien of energy Emin and E,, respectively (cf (25)). ?he distribulion 
{P'(Er,At)) is the one within the WO barriers. The parameters used here are (in 
appropriate units) p = 0.5, h = 1.0, WO = 1 . 5 , ~  = 1.1, bo = 2.2 and At = 3.0. Ihe 
fxtemal driving force is chosen to be mnstanl with a urenglh fo = 1.5. 

22. Quantum mechanics 

Consider an HO which is initially prepared in the state m (m = 0 represents the 
ground state in the following). Its probability to occupy the state n after having been 
driven during a time At is 

where G(q',Atlq,O) is the Green function which propagates the system from position 
q at time 0 to position q' at time At and ipm (v,,) is the eigenfunction of the HO 
w.ruyunull,l; L" >La\= I I L  , 8 * , .  

The explicit expression of the occupation probabilities P2M(At )  we are interested 
in here is [14] 

.-..--e....,.-.4:.." .,. I ,-, 

1 
P 2 M ( A t )  = -Wz"(At)exp(-W2(At))  n! (2.7) 

with 

W 2 ( A t )  = IF(At)12/h. (2.70) 

Contrary to its classical counterpart (2 .4) ,  the Poisonian expression (2.7) presents 
no singularities and extends Over the whole mnge of energies from the ground state 
up io "my. I I I W  UIIICICIIGC in U C ~ V L U U L  is due to iiie f x t  h i  phase coherence 
is taken into account in (2.6) but not in (2.4). Therefore, as already mentioned in 
the introduction, a generalized 'tunnelling' process across the dynamical barrier of 
energy E,,, allows the quantum driven HO to reach the classically forbidden energy 

I .C_IL_ -:- A:= ^_^_^^  , L^L^__: , 
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+ x  
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Flgure 2. Quantum energy distributions {P2'(At)) (+) and {P2' ,d(At ) )  ( x )  BS a 
function of the HO quantum number n (the values of lhe occupation probabilities are 
marked at n + 112). 'The two venical lines mrrespond m the WO dynamical tamers. 
?he parameters are the Same as those used in figure 1. 

region above E,, [13]. So the energy distribution {P$M(At)) is characterized by a 
tunnelling tail extending over the whole classically forbidden energy region. Figure 2 
shows an example of such a distribution. 

The difference between the classical and quantum versions of the model also 
appears at the level of the moments associated with the energy distributions. While 
the classical and quantum mechanical energy averages 

(E(At))  = Eo (1 + 2W2(At)) 

(E2(At))  - (E(At))'= 4EiW2(At) (2.86) 

(2.W 

and energy variances 

are the same, all higher moments are different, 

3. Energy distributions of the dissipative driven IIO 

We consider now the case of interest in this paper, i.e. the dissipative system formed 
by the driven HO coupled to a noisy environment. As in the theory of Brownian 
motion this environment is characterized by a friction force and a correlation function 
b ( t - t ' )  = ( L ( t ) L ( t ' ) ) ,  where L ( t )  is a Langevin force with (L(t))=O. Although the 
friction force and the correlation function are generally time-dependent we postulate 
in the following that the friction force has a constant intensity y and introduce the 
Markovian approximation b ( t  - 1 ' )  = b,b(t  - t '). This assumption is only justified 
in the limit of large temperature, i.e. b,/27 >> 1. We have checked that it does not 
change any physical conclusions concerning our work by implementing also finite-time 
correlation functions b ( t  - t'). We shall come back to the validity of time locality 
in the framework of the study presented in section 4. We also suppose that the 
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coupling to the environment is switched on only over the time interval during which 
the driving force is acting on the Ho. This is the case in many situations of practical 
interest as, for instance, in the study of the excitation of Rydberg atoms during their 
passage through microwave cavities [Z, 31. Finally we restrict our study to the case of 
underdamped motion of the HO, i.e. wu > X = y / 2 p ,  which is the mast interesting 
one in practice. 

3.1. Classical energy distribution 

In the classical case the equation of motion of the driven U0 is now the following 
Langevin equation 

P Q C l ( t )  + Y4d(t) + Pw:¶d( t )  = f(t) + U t ) .  ( 3 4  

The initial condition is chosen to be the same as in (2.2), and for the same reason. 
Since the classical solution depends linearly on the force L( t) and since this quantity 
is Gaussian distributed, the phase-space distribution p ( q , p , A t ;  Iu,&,) of the HO at 
time A t  reads [lS] 

P ( q , p , A t ; I u ,  +U) 

with Io = R/2 and 0 < +,, < 27r. Here (qd(lU,&,,At)) is the averaged solution 
of (3.1) ((pd(Iu,+U,At)) = ~ ( q ~ ( l ~ , 4 ~ , A t ) ) )  and I( C 11 is the determinant of 
the classical covariance matrix C whose matrix elements are the different variances 
associated with the HO, i.e. 

CII = (q:i(Iu,4u,At))- (qci(lu>4u,At))* 

CIZ = CZI = 1 0 ,  +U, A ~ ) P , (  1u 9 +U, At)) - (qsi ( Iu,4u At)) (P,I ( 10, +U, At)) 

Cz = ( ~ ~ ( ~ u , ~ u , A ~ ) ) - ( ~ ~ I ( ~ u , ~ u , A ~ ) ) ' .  (3.24 

The final probability distribution in energy is then 

PCL3d(E,,At) = L / d O u  27r / dq 1 dp 

Zr +N +N 

U -N -N 

x 6 ( E f - ( p 2 / 2 ~  + P ~ : ~ ~ I ~ ) ) P ( ~ , ~ , A ~ ; I u , ~ u ) .  (3.3) 

This expression is easily computed numerically by using the usual transformation 

q and p by a single one over 4f. 
Figure 1 shows also a typical energy distribution {FL,d(Ef ,At ) } .  The coupling 

of the driven HO to the environment induces simultaneously two competing effects on 

= vwws $1,  v a $ i E  Ifid :P$&p the dc&!e hteg:p::.=fi c+ei 
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the distribution. While friction lowers the mean energy of the HO, diffusion broadens 
its energy distribution and therefore allows the HO to reach final energies beyond 
the dynamical barriers well inside the previously forbidden regions of phase space. 
This behaviour is reminiscent of the phenomenon first discussed by Kramers [16] in 
connection with classical transmission over a potential barrier due to the interaction 
with an environment. As expected, for asymptotic times (and f ( t )  acting only over a 
finite interval of time), (3.3) reduces to the usual Boltzmann equilibrium distribution 

PCL,’ ( E,, CO) = (27 wu / bu) exp( -27 E,  / bo) (3.4) 

where the ratio 27/bu may be interpreted as an inverse equilibrium temperature p 
(Einstein’s relation). 

3.2. Quantum energy distribution 

If the quantum drlven HO IS coupled to the dissipative environment the occupation 
probability of a state n at time At, the HO being initially in the state m, is given by 

.. 

where the p i s  are the eigenfunctions of the HO and K is the double propagator 
which describes the evolution from some initial p i n t  qu(q;) to a final p i n t  qr(q;). 
Its explicit expression is [14, 17, 181 

and involves a double integral over the paths q ( t )  and q ‘ ( t )  with k e d  boundaries 
((Iu, 4,) and (q; ,  q;)  respectively. Here S(q) is the action of the HO, 

(3.7) 

with L ( q , q )  = pq2/2-pw:q2/2, and p(q,q’) is the influence functional which takes 
into account the coupiing to the environment ana to the externai driving force. irs 
expression reads 

at At 

--/di!(q(t‘) 1 - q’(t‘))/dt”(q(t”) - q ‘ ( t ” ) ) b ( t ’ -  t”) 
2ii2 

U U 
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where the friction coefficient y and the correlation function 6(t - t') = b,b(t - 1') 
are the same as in the classical case. This influence functional can be derived from 
transport models [18]. Here we postulate it, hence it is different from the influence 
functional obtained in [I91 since it has not been derived through an explicit description 
of the environment. One can show that it leads to a differential equation for the 
density matrix which is the same as the one derived in [20]. 

The double propagator K can be worked out analytically [21] as the continuum 
iimit of the discretized expression of (3.6). it can be written as 

K = Cexp(@) (3-9) 

The explicit expressions for C and @ depend on the parameters of the model and 
on specific integrals of the driving force. The real constant C takes care of the 
yu'lrr,u,,r LL"C.LU~LIULL3 'll"",," L U G  Jkirr"nr,a,y C.IPSDIG3I pauw WlllC,, UJ,,I,,""LC ,U u1.s 

complex phase a. Both quantities are found in appendix A where, for the sake of 
completeness, @ is given for an arbitrary correlation function b(t  - t '),  

Using expression (3.9) in (3.5) it is possible to work out the non-perturbative 
compact analytic expression of the occupation probabilities P$M,d( At)  we are 
interested in here. Since this expression is rather cumbersome and since its behaviour 

also give the essential steps of its derivation. 
The expression (B.3) of the occupation probabilities P$M'd(At) that is obtained 

is well suited for numerical applications. Figure 2 displays a typical probability 
distribution { P$M'd(At)). One sees that the generalized 'tunnelling' effect 
responsible for the tail of the quantum energy distribution is clearly affected by 
LIIC lruwy CIIVIIUIIIIICIIL. 

As already done in figures 1 and 2, we choose the driving force to be constant 
for the remainder of the paper, ie. 

"..~̂ ...... a .. ̂ ... ...:,..... ~_-..-rl .La "*...:,...-"-. ^,^^^:^^I ^̂ .L̂  __.a.:̂& ---.- :L __.^ I,. .,..- 

iioi ~ajji .a iiii&ij.diid ;y. siiiip:e $speciioa, W~ pi~ ,e i i i  ii ii, api"adiic 8 Wheie . W ~  

&L^ -- :... --.2 _ ^ _ _ ^ _  * 

f ( t )  = fo for 0 < t < At 

= o  othewise 
(3.10) 

which, using (2 .3)  and (2.7a), gives 

W2(At) = ( W ~ , , / 2 ) ( 1 - ~ 0 s ( w , A ~ ) )  (3.1 1) 

with 

w:ax = 2 j,2//L/iw:. (3.11~) 

The quantity W z ( A t )  is periodic for this choice, and therefore one can increase 
the time interval in steps of 2ri/wu without affecting either pL or PQM. It is 
seen that the energy E,,,,, of the upper barrier (cf (2.5)) reaches its maximum value 
clmaX = 

3.3. Properties of Ihe quantum occupation probabilities 

We give here some properties characterizing the occupation probabilities P2'*d( A t )  
and the conclusions which may be drawn from them. 

- - I .  + , , K ) z  pi hiiies ai = ( r / u , , ) ~ ~ r  + iiitegerj, 
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3.3.1. Mean energy. It can be checked that the analytic expression of the mean 
quantum energy 

m 

(3.1%) 

of the HO coincides with the corresponding mean classical energy 

calculated from the solution of (3.1) together with the initial condition (2.2). 
Introducing the useful parameter x = (bo/TwuY) - 1, this expression may be written 
as 

1 + 2 S 2 ( A t )  + x 

with 

(3.13) 

(3.13a) 

Such a result is expected [22] and supports the remark already made in the 
introduction, that the differences between the classical and quantum descriptions are 
manifested in the finer details of the occupation probability distribution. This check 
is nevertheless of importance because it shows that (3.8) is indeed the appropriate 
influence functional to describe the effects on a quantum system of a Markovian 
environment acting through friction and diffusion. 

3.3.2. Equilibrium. When At  goes to infinity the driven HO relaxes towards 
equilibrium and expression (8.3) then reads 

where 15; is the Laguerre polynomial of order n. If, however, the driving force acts 
only over a finite time, (3.14) reduces to the usual Boltzmann occupation probability 

(3.15) 
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where the quantity p plays the role of an inverse equilibrium temperature which 
fulfils the quantum version of Einstein's relation, i.e. 

- fw, coth (7) PhWU -- 
Y 

(3.16) 

One sees that (3.15) and (3.16) are meaningful expressions only if z >, 0, that 
is to say bo /y  2 hw,. For a given diffusion coefficient b,, this condition constraints 
the friction coefficient y to lie in the interval [O,b,/fwJ (with b, /Tw,  < 2pwo 
because the motion is underdamped). (3.16) shows that the smaller y the better the 
Markovian approximation (high temperature limit). 

3.3.3. Shorf-lime limit. In the limiting case y = bo = 0 the general expression (B.3) 
reduces as expected to (2.7). On the other hand, if y and b, are both fixed and At  
tends towards zero, one may expand (8.3) to first order in X = y/2p and bo. This is 
the snort-time iimit oi the occupation probabiiities i - , , - ~ - .  it reads -nM d 

PZMSd(At) = exp(-wz(A')) Wzn(At) + (XAt){w*"(At)[l+ ns(At)] 
n! 

- W2(n-i)(At)[n(n - l)s(At) + n]] 

+ (*) [ W2("+')(At)s(At)  - W2"(At)[l+2ns(At)] 
2pTLwu 

+ W2("- ' ) (A t ) [n (n  - l )s(At)  + 
with 

sin(w,At) 
s(At) = 1 + @,Ai ' 

For large quantum numbers n, (3.17) approximately reads 

(3.17) 

(3.17a) 

(3.18) 

One sees that the condition r > 0 implies the inequality P2M'd(At) 2 PgM(At) 
for n large. As seen in figure 2 this inequality is not restricted to the case considered 
in (3.18) but remains valid more generally, for At finite and n not ~ r y  large. 

4. Study of the behaviour of the dissipative driven HO above the dynamical barrier 

With the help of some numerical examples where the parameters y, bo and At  
are varied independeniiy, we study now the eiiecis of the noisy environment on 
the generalized 'tunnelling' process through the dynamical harrier of energy E,,,. 
We first identify the two extreme regimes which characterize the dissipative driven 
HO. We then examine the behaviour of the " E l l i n g  tail of the energy distribution 
{P,M'd(At)} by proceeding in two different (yet complementary) ways. On the 
one hand, the comparison between the occupation probabilities P$,M'd(At) and 
PZM(Al) enables us to study how the occupation of the HO levels iF, affected 
by the environment. On the other hand, the comparison between the occupation 
probabilities P2''d(At) and F L ! d ( A t )  allows us to discuss the effect of dissipation 
on quantum phase coherence. 
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4.1. Extreme regimes of the dissipative HO 

According to (3.16), for a given value of the diffusion coefficient b,, the friction 
coefficient y has to take values within the interval [0, bu/Two]. As shown in figure 3, 
the tunnelling tail of the distribution {P,"(At)} lies between the two extreme 
distributions corresponding to the boundaries of the interval. Although rather 
unphysical, these two extreme regimes deserve to be mentioned because they set 
the bounds of the effect of the dissipative environment on the driven HO. 

In the so-called diffusive regime, which corresponds to y = 0, the diffusion effect is 
the strongest. This is also the regime where the Markovian approximation is working 
(see discussion at the beginning of section 3). The expression of the occupation 
probabilities PzMId(At) is given by the leading order of the expansion of (8.3) as a 
function of y. In this limit, the mean energy (3.13) reads 

( E ( A t ) )  = Eu (1 + 2W2(At)) + D A t  ( 4 4  

where D = b J 2 p  is the momentum diffusion constant associated with the classical 
variance C,. As expected, the mean energy is always larger than the one 
mrresponding to the absence of coupling (cf (2.8a)), and a similar conclusion holds 
for the energy variance. Therefore, in the diffusive limit, the probabilities PzMId are 
larger than the probabilities P," above the barrier. 

The other extreme regime, which is called dissipative in the sequel, corresponds 
to the case for which the friction coefficient takes its maximally allowed value 
y = b u / f w u .  If in this case y becomes large (U" small compared to bu) the Markovian 
approximation may break down; since, however, we checked that this approximation 
does not invalidate the conclusions (see discussion at the beginning of section 3). we 
discuss this regime here for the sake of completeness. The occupation probabilities 
reduce to the remarkably simple Poissonian expression 

( 4 4  
1 PZMvd( A t )  = zSz" (At  ) exp( - S2( At)) 

where S z ( A t )  has been defined in (3.1%). The comparison between W2(At) (cf 
3.11) and S 2 ( A t )  shows that the condition W 2 ( A t )  > S z ( A t )  is usually satisfied 
by choosing the time At  adequately. This means that both the mean energy and the 
energy variance are usually smaller in the dissipative case than in the case without 
coupling. Hence, for y = b , /h , ,  the probabilities PzMVd are usually smaller than 
the probabilities P,"  above the barrier. In the case where the friction coefficient y 
is not equal to the limiting value bo/r"wo but close to it, the tail of the associated 
distribution does not completely fall under the tail of the distribution { P , " ( A t ) } .  
The two tails cross near a critical quantum number n* (for instance n* = 9 in 
figure 2). Numerical examples show that n* increases with W&, but decreases as 
x increases. An analytic expression of n*(At )  may be given in the case of the 
short-time limit. Eguating expressions (2.7) and (3.17), one gets 

n ' ( A t )  = Int 

(4.3) 
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where Int{y] is the integer part of y and where s ( A l )  has been defined in (3.17a). 
The considerations of this section allow us to conclude that, as the ordinary 

tunnelling phenomenon, the generalized 'tunnelling' process is reduced (enhanced) 
by the effect due to friction (diffusion). This rough picture will be improved in the 
next section. 

0 2 4 b  8 10 12 1L 

Figure 3. Quanlum energy dislributians corrcsponding to the two alreme regimes 
introduced by the consistency condition (see text), as a function of the HO quanlum 
number n. 'Ihe upper curve (V) mrresponds 10 the diffusive regime y = 0 and the 
lower cuwe (A) lo lhe dissipative regime y = bo/hwo. nlhe distribulion {Pz'(At)] 
( x )  is shown for comparison. 'Ihlhe two vertical lines correspond lo the two dynamical 
barriers. The paramelen used here are p = 0.5, h = 1.0, WO = 1.5, bo = 2.2,  fo = 1.5 
and At = 3.0. 

" 

4.2. Comparison beiween ihe quantum cccupaiion probabilities wiih and without 
environment 

The competing effects of friction and diffusion, on the one hand, and the conservation 
of total probability, on the other hand, give rise to opposite trends of the tunnelling 
tail of the distribution { P F d ( A t ) )  in the  vicinity of the barrier, depending whether 
the system is near the dissipative limit or near the diffusive limit. This may be seen 
by studying, for a given diffusion coelficient b, and for a given time At,  how the first 
normalized ratios P2''d/P2M above the energy barrier are behaving as the friction 
coefficient y decreases within the allowed interval 10, b,/hw,]. Figures 4 and 5 show 
that, in the neighbourhood of the dissipative limit y z bu/hwu (here on the right of 
the graphs), a decrease of the coelficient y produces a continuous increase of these 
ratios. Such a population behaviour is expected and easy to explain. As the value 
of the coefficient y diminishes, the effect due to friction decreases in importance 
L if mmprer!  --... ~ t ! !  the effect d x  !o !!i!?usio!! an!! the abi!ity of the system tc reach 
energies above the barrier is increasing in consequence. Quite on the contrary, the 
same graphs show that in the neighbourhood of the diffusive limit y 0 a decrease 
of the coefficient y leads to a continuous decrease of the ratios P,''d/P$M. This 
depopulation behaviour originates from the conservation of the total probability. The 
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effect due to diffusion prevails now completely over the effect due to friction and 
the tail of the distribution flattens out more and more as one goes along towards 
the diffusive limit. But this possibility to reach higher and higher energies above 
the barrier occurs of course at the expense of the individual occupation probabilities 
P,M3d in the energy region around the barrier, whose values have to diminish in 
order for the total occupation probability to remain constant 

0 6 1  

1 

Figure 4 Logarithm of the ratio P~M3d/P~m far n = 3 (corresponding to the fin1 HO 
stale above the dynamical terrier), as a function of the frinion mfficient y. me inset 
shows the variation of the ratio (E) /hwo with the coefficient y. ?he parameten used 
h e r e a r e ~ = 0 . 5 , h = 1 . 0 , w o = n / Z , b o = 5 . 0 , f o = l . 0 a n d  At=6.0 .  
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Figure 5. Logarithm of the ralias PiMrd/P2M far n = 4 Oower curve), n = 5 
(middle NNe) and n = 6 (upper curve), as a function of the friclion coefficient y. me 
prameters are the same as those wed in figure 4. 
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The diffusion coefficient and the time At being lixed, it is natural to ask for the 
value 7' of the friction coefficient 7 for which the transition from the population to 
the depopulation behaviour occurs above the barrier. In fact, a different value Y* 
has to be associated with each individual HO state which is considered. The b e t  
in figure 4 displays the mriation of the mean energy (E) of the HO (cf (3.13)) as 
the value of the coefficient 7 is modified. It shows that, starting near the dissipative 
regime, a progressive decrease of the coefficient y produces as expected an increase 
of (E). From the study of many numerical examples, one finds that once (E) has 
increased enough as to be equal to the energy of a given state n, ie. when 

(4.4) 

the transition between the two behaviours occuls for this particular state. Indeed, it 
can be checked on the examples of figures 4 and 5 that the value 7' of the coefficient 
y for which the condition (4.4) is satisfied (see inset in figure 4) is exactly the same as 
the one for which the level n starts to be depopulated after having been continuously 
populated. The value of y* decreases with increasing n. In appropriate units, this 
value is 7' = 0.50 for n = 3 (figure 4) and 7' = 0.38,0.30,0.25 for n = 4,5,6 
(figure 5). 

There exists another way to observe, level by level, this transition from the 
population to the depopulation regime, which is much more suited for actual 
experiments. It consists in studying, for a given friction coefficient and a given 
diffusion coefficient (i.e. for a given temperature of the system), the mriation with 
time A t  of the first normalized ratios P,M1d/P2M above the barrier. In order to 
do such a study in a transparent way one chooses the values of the successive times 
for which these ratios are computed as A t  = ( 2 x / w o )  ( k  + t) ,  where k stands for 
an increasing integer while 0 < ( < 1. For this particular choice of the times At  
the probabilities P , M  do not depend on k (because of the property of periodicity of 
the quantity W*(At ) ,  cf (3.11)), in contradistinction with the probabilities P , M s d .  
One is therefore able, for a given HO state, to determine in an unambiguous manner 
the time At* for which the expected transition happens. In practice, interpreting the 
relation (4.4) in a timedependent picture, this time At' has to correspond exactly 
to the time for which the value of the mean energy ( E ( A t ) )  of the HO becomes 
equal to the value of the energy associated with the considered state. This is well 
confirmed hy many numerical examples, among which the ones of figures 6 and 7. 
Indeed, reading on the graph ( E ( A 2 ) )  in the inset of figure 6 the time value for 
which the mean energy reaches a given HO energy, one finds (in appropriate units) 
that At* = 4.1,7.1,10.6 for n = 2,3,4, which is precisely the value for which the 
associated state (n = 2 in figure 6, n = 3,4 in figure 7) starts to be depopulated. It 
takes obviously longer for ( E ( A t ) )  to reach larger values and therefore the higher 
the state, the later the change from population to depopulation behaviour. 

The succession in time of these two regimes may be interpreted as the succession 
in time of two different processes. As long as A t  < At* there is an effective 
competition between the effects due to friction and diffusion, and the level is 
populated through the generalized 'tunnelling' process. When A t  > At' the effect 
due to diffusion is completely prevailing over the effect due to friction. Therefore the 
process which depopulates the level has rather to be viewed as a diffusion-induced 
transmission through the barrier which can be considered as the quantum counterpart 
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Figure 6. Logarithm of the ratio P$',d(At)/PzM(At) for n = 2 (corresponding 
to the fin1 HO State above lhe dynamical barrier), for the successive limes A! = 
(2 lr /wo)(k  + E )  wilh k = 0,1,2 dc.  The inset shows the varialion of the ralio 
(E(At) ) /hwo with these limes At .  ?he parameren used here are fi = 2 .0 ,h  = 
0.25, WO = Zs, y = 0.1, bo = 3.0, fo = 13.5 and = 0.1. 
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Flgure 7. Logarithm of Ihe ratios P:M'd(At)/PzM(At) for ? I  = 3  (lower cuwe) and 
n = 4 (upper "e), for the successive times A t  = (Zlr/wo)(k + () wilh k = 0, I ,  2 
etc. The parnmeten are lhe Same as those used in figure 6. 

of the classical Kramers diffusion. This picture will be corroborated by the results of 
the next section. 

The population-depopulation transitions are observed above the barrier only when 
the mean energy has time enough to reach E,,, before it relaxes to equilibrium. 
Of course, as shown by (3.13), the larger the friction coefficient y the longer the 
time needed by ( E ( A t ) )  to cross the dynamical barrier. Therefore the smaller this 
coefficient the more pronounced the effect, i.e. the larger the number of levels for 
which the transition takes place. Hence it is in the vicinity of the diffusive regime, 
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when the Markovian assumption is best justified, that the effect is most favourably 
seen. 

Several analytic results, which are relevant to the population-depopulation 
transition, may be. derived close to the diffusive limit. For simplicity, they are given 
in the case for which the value of E,,, is the largesr The minimal time (A t ) , ,  
which is needed for the mean energy to reach the barrier is obtained by equating the 
expression (4.1) to the expression of E,, (cf (2.5)). One gets 

( A t ) , ,  = (%) @. (4.5) 

This time sets the lower bound of the transition times At*.  The expression of the 
mean energy which is valid close to the diffusive limit is obtained by taking the two 
lowest orders in the expansion of (3.13) in powers of A. It reads 

( E ( A t ) )  = E , ( 1 + 2 W ~ , , + 2 ( 1 -  W&,)AAt).  (4.6) 
Equating this last expression to the expression of E,,, one obtains the minimal time 
A t  needed by the mean energy (4.6) to reach the barrier, which (for I > W:,) is 
given by 

On the other hand, the time At' at which a state of given quantum number n above 
the barrier undergoes the transition from the population to the depopulation regime 
is obtained hy equating the expression (4.6) to the expression E, = Eo( 1 + 2n) of 
the energy of the state. It reads 

For n, z >> W&, the time At' is approximately given by 

Finally, it is interesting to get an idea of the number of levels which are undergoing 
the transition before relaxation of the mean energy occurs. The expression (3.13) 
shows that ( A t ) ,  = 1/2X is a typical relaxation time of (E(A1) ) .  Equating ( A t ) ,  
to the expression (4.8) of At*,  one gets approximately the quantum number N of 
the highest state for which the transition is still clearly seen 

N Int { 5 + +} 
which, for I >> WiaX, may be written as 

(4.9) 

In numerical studies the minimal size of the density matrix describing the time 
evolution of a dissipative quantum system has clearly to be chosen of the order 
of N .  
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4.3. Comparison between he classical and quantum occupation probabilities 

In order to complement the previous discussion, it is interesting to compare the 
tails of the distributions {PLvd (Ef,At))  and {P2''d(At)) for various values of 
the parameters y, bo and At. Indeed, such comparisons allow us to study the 
importance of the generalized 'tunnelling' process compared with the classical diffusive 
transmission through the dynamical barrier. They provide us therefore with a clear 
picture about how the noisy environment affects quantum phase coherence. 

the dynamical barrier, the generalized 'tunnelling' process decreases the ability of 
the system to reach energy values above E,,,. This is the very fingerprint of 
phase coherence, whose effect is to reduce the values of the quantum occupation 
probabilities in comparison with the values of the classical occupation probabilities. 
This reduction becomes more important in roportion as energy increases. For the 
example of figure 8, the ratio @M,d/pL,B is of the order of 0.8 for n = 4 and 
0.7 for n = 5 whereas it is of the order of 0.04 for n = 16 and 0.03 for n = 17. 
Hence phase coherence is responsible for the localization in energy of the tail of the 
quantum distribution. 

F$,$:e 8 rhcwr $he$, if "prrpcJ 'e $he c!e$$i..! diff-&ye z*p.&$ga *L:ccg!: 

10-10 . , , , , , , , , , , , , , , , , . , . , , , , , 
4 b 0 10 12 14  16 

4, 
Figure 8 Comparison between the energy distributions {PCL'd(Er, A t ) }  (full line) and 
{P2M,d(At)} ( x )  abave the dynamical tamer. The classical (quantum) distribution is 
the Same as in figure 1 (7.) respectively. 

The differences A(n) = pLvd(Er = E , : A t )  - E$M3d(At) provide a 
quantitative measure of the importance of the generalized 'tunnelling' process 
compared with the classical diffusive transmission. These quantities enable us to 
study in which manner quantum phase coherence is affected by variations of the 
friction and diffusion coefficients and of the time At. Figure 9 shows that, for a 
given diffusion coefficient and a given time At,  the differences A( n) are decreasing 
as the friction coefficient y increases, the decrease becoming more significant as the 
state n lies higher in energy. For the example of figure 9, this decrease between 
the cases y = 0.4 and y = 1.0 (in appropriate units) is of one order of magnitude 
for n = 10 whereas it is of three orden of magnitude for n = 20. This means 
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Figure 9. Differencs A(n) = for HO s la t s  n 
above Ihe dynamical barrier (the values of (he differences are marked at n + l/Z), as 
a funnion of the Iriction mefficient 7. The lower CUNC mrresponds lo 7 = 1.0, the 
middle one IO 7 = 0.7 and the upper one to 7 = 0.4. The parameten used here are 
r=O.S,h=l.O,wo=l.S,b~=3.5, f o = O . l  and At=3 .0 .  

= (n+ I/Z)Sw,) - 

that the effect of quantum phase coherence is progressively weakened as the friction 
coefficient grows, and the more so the higher one goes in energy. In other words, 
the phenomenon of localization in energy of the quantum distribution becomes less 
apparent in proportion as the effect due to friction increases. So it is for y P 0, 
ie. close to the diffusive limit, that this phenomenon is most clearly seen. In a 
complementary manner one can also examine the behaviour of the differences A ( n )  
with respect to variations of the diffusion coefficient bo, for a given friction coefficient 
and a given time At. This is done in figure 10 which shows that the quantities A(n)  
are increasing with the coefficient 6,. This increase becomes more pronounced if the 
considered energy is larger. Hence the phenomenon of localization in energy of the 
quantum distribution becomes more conspicuous as the effect due to diffusion gets 
more important. 

The effect of quantum phase coherence on the occupation probabilities is changing 
with time. This is clearly seen in figure 11 which displays, for three different HO 
states n beyond the barrier, the variation of the difference A(n, At) as the time At 
increases in steps of 2a/w, (the values of the different parameters are the same as 
in figures 6 and 7). As it was the case for the ratios P,M'd(At)/PzM(At) (and for 
the same reasons, as Seen Mow) the behaviour in time of the difference a j n ,  at j is 
characterized by two successive stages. In the first stage the effect of quantum phase 
coherence on the occupation probability of a given state is increasing in proportion as 
time grows. Indeed, the effect due to diffusion is gaining progressively in importance 
over the effect due to friction as time goes and so, according to what has been said 
above, the difference A(n ,At )  has to increase in consequence. On the contrary 
one sees that the effect of quantum phase coherence is decreasing with increasing 
time in the second stage. 'RI find the origin of this behaviour it is crucial to observe 
in figure 11 the time at which the effect of phase coherence on the occupation 
probability of a state n starts to decrease after having increased. Looking at the 
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n 

Figure 10. Differences A(") = P"md(Er = (n + 1/2)hwo) - P2M'd for HO states 
n above the dynamical barrier, as a function of lhe diffusion mefficienl bo. The lower 
curve mnesponds lo bo = 3.0, the middle one to bo = 5.0 and the upper one to 
bo = 7.0. The parameters used here are p = 0.5, A = 1.0, WO = 1.5, 7 = 1.0, fo = 0.5 
and A t  = 3.0. 
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Figure 11. Differences A(n,At) = P"md(Er = (n+1/2)A~o,Af)-P~~,~(At) for 
HO States n beyond lhe dynamical tamer, for successive times At = ( 2 n / w o ) ( k  + E )  
with k = 0, I ,  2 elc. The upper cuve is for n = 2, the middle one for n = 3 and the 
lower one for n = 4. The parameters are the Same as those used in figures 6, 7. 

inset of figure 6, one sees that this time corresponds once again precisely to the 
time for which the condition ( E ( A l ) ) / h w ,  = n + 1/2 is satisfied, Le. the time 
At' at which the papulation4epopulation transition occurs for the state n. As 
a matter of fact one can check that, for the considered state, the time associated 
with the maximum of the curve is the same in figure 11 as in figures 6 and 7, Le. 
AV = 4.1,7.1,10.6 for n = 2,3,4. This coincidence allows us to conclude that the 
decrease of quantum phase coherence in the second stage has the same origin as the 
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depopulation behaviour, which is the conservation of the total occupation probability. 
All these facts lead us to the conclusion that, for a given state, the population stage 

is also the stage for which the effect of quantum phase coherence on the occupation 
probability increases whereas the depopulation stage is, on the contrary, the stage 
for which the effect of quantum phase coherence is weakened. Hence the transition 
from a population to a depopulation behaviour also corresponds to a transition from 
an increase to a decrease of the effect of quantum phase coherence, occurring at the 
same time At'. 

This conclusion supports what has already been said in the previous section, that 
the existence of two stages in the occupation of a given energy level is the fingerprint 
of the succession in time of two different processes. Indeed, when A t  < Al., the 
values of the classical and quantum occupation probabilities are moving away from 
each other as time increases. ?his is a clear indication that the level is populated 
by a different process in each case. It is the diffusive transmission in the classical 
case and, because the effect of phase coherence is enhanced in this stage, a genuine 
generalized 'tunnelling' process in the quantum case. In contrast the values of the 
classical and quantum occupation probabilities are moving closer to each other as 
time grows when A t  > At'. This means that the level is depopulated by a process 
which, from a generalized 'tunnelling' phenomenon, tends progressively to become 
a quantum diffusion induced transmission through the barrier as the effect of phase 
coherence is weakened. 

5. Conclusion 

The purpose of this paper has been to study how the process of 'tunnelling' through 
an energy barrier of dynamical origin, which generalizes ordinary tunnelling through 
a potential barrier, is affected by the presence of a noisy environment. 'Ihi has been 
done in the framework of a soluble model which consists of a driven HO (angular 
frequency wu) coupled to a Markovian environment (friction coefficient 7, diffusion 
coefficient bo). The finite-time energy distribution of the quantum dissipative driven 
HO, which is the central quantity of interest in the study, has been expressed in closed 
analytic form without resorting to any approximation. 

The comparison of the tail of the quantum energy distribution in the diffusive 
regime (y = 0) with the one in the dissipative regime (y = b,/tiw,) shows that the 
generalized 'tunnelling' process through the dynamical barrier is enhanced (reduced) 
by the diffusion (friction) effect. This rough picture has been refined by studying how 
the individual HO levels above the dynamical barrier are occupied. The conservation 
of the total occupation probability implies that the occupation of a given level is 
characterized by two different stages occurring successively in time. The level is 
continuously populated (depopulated) in the first (second) stage. Going further, it 
has been shown that the transition from the population to the depopulation stage 
happens precisely at the time At* at which the mean energy of the dissipative driven 
HO becomes equal to the energy of the considered level. An analytic expression 
of Al., valid close to the diffusive limit where the Markovian description of the 
G,l*11Y1,1I,G111 Y "CDL ,U"LL1.C", xt -0  "CCL.  &.*C... 

These results have been complemented by a quantitative comparison between 
the generalized 'tunnelling' process and the classical diffusive transmission through 
the barrier. Phase coherence localizes the tail of the quantum energy distribution 

:- L"... :.."+:finrl I..," I...-.. A.,-" 
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compared with the tail of the classical energy distribution. This localization effect 
becomes more (less) conspicuous as the diffusion (friction) coefficient is increased. 
The study of the effect of phase coherence on the occupation of a given HO level 
shows that the population (depopulation) stage is also the stage in which phase 
coherence is enhanced (weakened). As a consequence, a given level is populated 
hy a genuine generalized ‘tunnelling’ process whereas it is depopulated by a process 
which can be considered as a quantum diffusion induced mansmission through the 
harrier. 
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Appendix A 

In the case of underdamped motion of the HO (U,, > X = y/2p), which is the one 
considered here, the preexponential factor @ and the phase @ introduced in (3.9) 
read [21] 

p,/wi - Xz exp( AA$) 

2ahsin( W A t )  
@ =  

and 

@ = ip[q(At)Q(At)  - q ( O ) Q ( O ) ] / h  + 1 / dt‘q(t’) dt”q(t”)b(t‘ - t ” )  
U 

(‘4.2) 

with q(1)  = q ( 1 )  - q’( t )  and Q(t)  = ( q ( t )  + q ’ ( 1 ) ) / 2 .  

obtained from (3.6): 
Here q ( t )  and q ’ ( t )  are the solutions of the coupled saddle-point equations 

i AI d (-) ac - - ac + y , j ’ ( t )  - f(t) - E/ dt’(q(t‘) - q ’ ( t ’ ) ) b ( t  - 1’) = 0 

dt a,j(t) aq(t) U 

(‘4.3) 

where C is the Lagrangian of the HO and the boundary conditions are fixed such that 

Solving these equations explicitly, it is possible to put the phase @ into the 
0) = qu, n’(0) = qh, d A t )  = qf and q’(At) = 9;. 

following form 
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where vu = qu - q& V I  = qf - qi, Qu = (nu + qh)/2 and Qf = (ql  + 4;)/2. The real 
time-varying coefficients Ai(i  = 1,9) depend either on y alone (A,,A,,A,, A,) 
or on both y and bu(Ai,A4,A,) or on both y and f(l)(A3, AT). Introducing the 
quantities 

a( t )  = (exp(X,l + X i a t )  - exp(X,t + AzAt))/(exp(XiAt) - exp(X,At)) 

and 

(AS) 

P ( t )  = (exp(X11) - '=P(Xz9)/(exp(X,W -"P(x,Al)) (A4 

with Ai(zl = X+(-)i(w~-Xz)i/z, these coefficients are given by the following general 
expressions 

A i  
dt'P(l')b(t - 1') 

I" 
h A, = -(X~exp(X,Al) - X,exp(X,At))/(exp(X,Al) - exp(X,At)) 

At  
dl'o(t')b(t - 1') 

Ai  A i  
A, =-&L d t u ( l ) i  dl 'a(t ' )6(l-t ' ) .  

For the case of interest here, i.e. 6(l - 1 ' )  = b,6(1 - t'), all these expressions can 
easily be worked out analytically. 

Appendix B 

We give here the general analytic expression of the quantum occupation probabilities 
P,,M'd(Al) .  'lb obtain it one starts with (3.5) and (3.9) (where C and are defined 
by (A.l) and ( k 4 )  in appendix A) and with the HO wavefunctions 

q,,(q) = (2u/ii)1/4(2",!)-i/z~n((2y)i/2q) exp(-uqz) 

where H ,  is the Hermite polynomial of order n and v = pwu/2h. 
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Changing wriables to 

=U = (2v) ' /2(4" t 4;)P 

Yu = (2.)'/*(qu - 4 ; ) / 2  

If = (2v)'/2(qf + 4; ) /2  

Yf = (2v)'/2(qf - n;) / z  
it is possible to integrate over q, and zf by using the identity [23] 

t m  
d i  exp(-I '+ iIp)H,(I+y)H,(z-y)  L 

Pz:sd(At) = ( 2 @ / u ) R e  { 1: dYu 

= 2"?r'/2n!exp(-P2/4)LU,(2y2 + p2 /2 )  

where L!! is the Laguerre polynomial of order n. 
One is therefore led to the intermediate expression 

dYf 

x "p(-ay: - by: + CY"Y[ + idyu t icy,) 

x LU, ((2 + A:/2y2) Y: t A:y:/2vZ + A2A6y,yf/u2) } 
x LU, ((2 + A m 4  Y: + A:Y:/2v2 + A,A,YoYr/V2) 

(B.l) 

where the quantities Ai are defined in appendix A and 

a = ( l - b u / h w u r ) ( l + A ~ / 4 ~ ~ ) + ( 1 + b " / h w u r ) ( A : / 4 ~ ~ )  

b = (1 + bu/hw"y)( 1 t A:/4v2) + (1 - b"/hwoy)( A : / ~ u ~ )  

c = -(1- bo/hwuy)(AsA8/2u2) - (1  t b,/hw,y) ( A , A , / ~ Y ~ )  (B.2) 

d = 2A,/(2u)'/' 

e = 2A3/(2v)'/' 

(it may be shown that the quantities a and b are aiways positive as expected). 
Considering the special case m = 0 we are interested in here (the general case can 

also be worked out directly), the previous expression is integrated in a straightforward 
way by using the polynomial expansion of L; together with an appropriate change 
of variables. The final result reads 
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where C: = n!/i!(n - i)! etc. and where the indices k and p have always to be of 
the same parity. 

The time-varying quantities Gi( i  = 1,6) are most conveniently expressed in terms 
of the parameter I = (bo/hwoy)  - 1. They are given by the following expressions 
(A = Y /2&) 

GI = 1 + ~ { l -  (1/2A:)(Su2 + Ai + A i ) }  
t 7 r ,  r 2  + - (gv2 + A; + A;jj;&gj 

G, = - v [ l +  z{(Aa -4vz  - Ai) /ZA:) ]  

G3 = - 4 ( u / A : ) ( A a  - A d }  

G4 = (1/2A:)[-2A2A6Fl -8vZA6Fz + z { ( A , A ,  - AzA,)Fl 
03.4) + 4 4 4  - A6)FZIl 

Gs = ( ~ / A : ) [ ~ A ~ F I  -2A6AaFz + 
G, = (v /2A:) [2( (4v2  + A : ) F f / 4 v z )  + 2(4uz + A i ) F l -  ( S X g F 1 F 2 / h )  

- As)FI  - ( A d ,  - AZAS)FZ}I 

+ z{((4vZ + Ai - A:)F:/4vz)  + (4v2  + Ai - A : ) F .  

- ( ~ X P F I F Z / ~ ) }  

with 

dlf(t)eA1 (cos (-1) + (e) w: - XZ sin (@t)) 

and 

A1 

F z =  (,&x)/. 1 
dl f( l)eA'sin ( m t )  

m 

One can check that P,,M'd(At) = 1, as it must be. 
n=U 
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